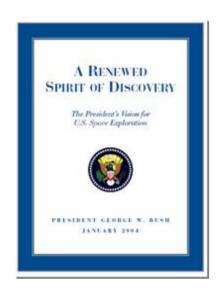
NASA Transition Overview

Exploration Systems and Space Operations
Mission Directorates


Dr. John Olson (NASA HQ - ESMD) Mr. Joel Kearns (NASA HQ - SOMD)

U.S. Space Exploration Policy

Foundations for Exploration & Change

Global Exploration Strategy Themes

Vision For Space Exploration

NASA Authorization Act of 2005

Human Civilization

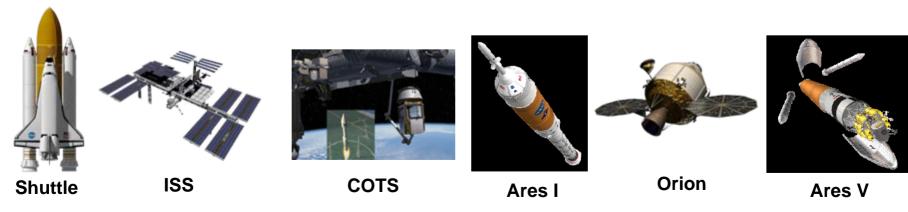
Scientific Knowledge

Exploration Preparation

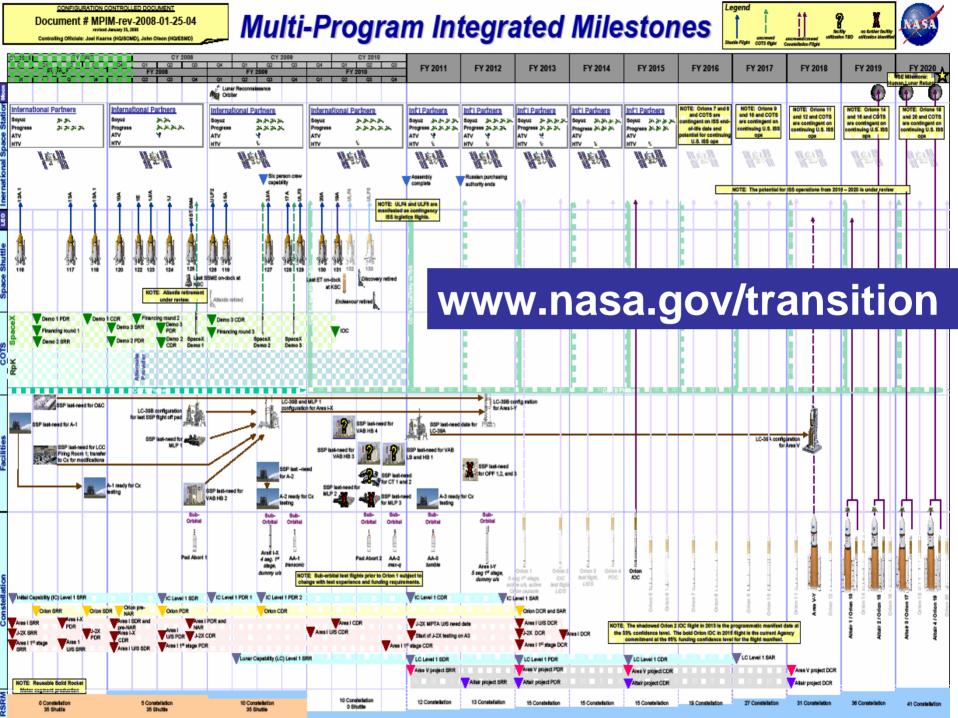
Global Partnerships

Economic Expansion

Public Engagement


What is NASA Transition?

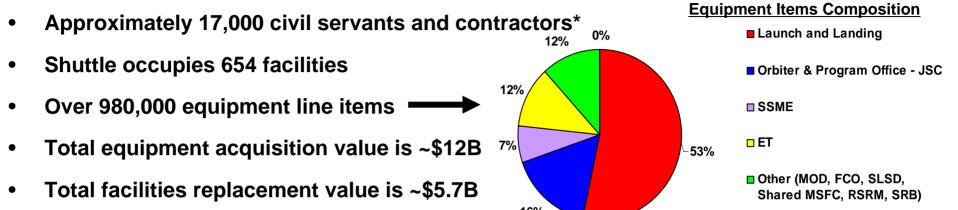
NASA Transition Definition:

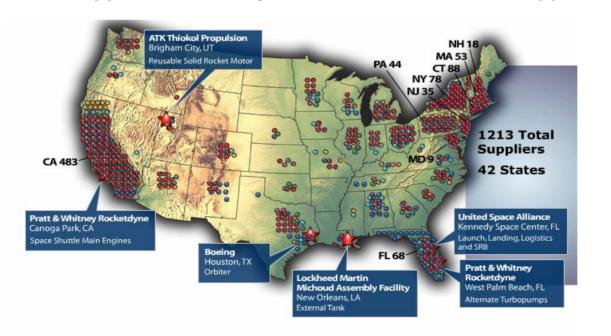

 The careful planning, optimized utilization, and responsive disposition of processes, personnel, resources, and real and personal property, focused upon leveraging existing Shuttle and ISS assets for Exploration programs' safety and mission success

A <u>Continuum of Transition</u> and Recurring Development to Operations Iterations:

- Space Shuttle Program Transition
 & Retirement (T&R)
- ISS Program Shuttle Transition and Retirement (STaR)
- Constellation Transition(s) from Development to Operations
- Commercial Orbital Transportation
 Services (COTS) Transition

Focus on Big 3: Workforce, Infrastructure/Property, Budget/Schedule




Exploration Roadmap

05	5 ()6	07	80	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
												-						Luna	r Ouipe	est Bui	lqnb
	***************************************	P .	ixplora	tion an	d Scien	icə Fin	ar Roi	otics N	lission	<u>ತ</u>		W.		2	1	0 N V	CC				
											1		W.								
		Rese	earch a	nd Tec	nnolog	y Deve	opmer	it on lපි	ತ	,	W	1/4	Le	1.							
		Cte	mmer	eial Cre	w/Carg	o for S	351				7				1						
N	_					J 131 13							7								
1	Sp	ସତେ 🤄	Shuttle	Opera	encii																
198				SS	P Trans	sition															
1			erA	ຣ I ຍກຢ	Orion	Develo	inemq			1											
			iereqC =va sva	ons Ca	pund Op	/ Devel	nemqe Mission	it Orangalika	ne)												
F	Т	,	_17.3/3	, 51113, 51	Jana Sp.	, ,	111331311			าป Alres	: I Prod	haijou	and Op	eratio	n						
												ħ		in the	A		4				
Z					Ali	air Lun	ar Lans	der Dev	elopm	ent		A					1				
-												4/					ı				
TANK								A	res V &	Earth	Depart	ure Sta	ຄ <u>ຢູ</u>							~ <u>"</u>	49.00
								ક	แนรเล	Systen	s Deve	emqol	it							No.	

Scope of the Transition Challenge: Shuttle and ISS Flight Safety is #1 Priority

1,500+ Suppliers: 2007 Key for ET, SSME, Element Suppliers

* FY07 workforce data from SOMD RMO. 2/15/07

<u>Color Code of Suppliers to Shuttle Prime Contractors:</u>

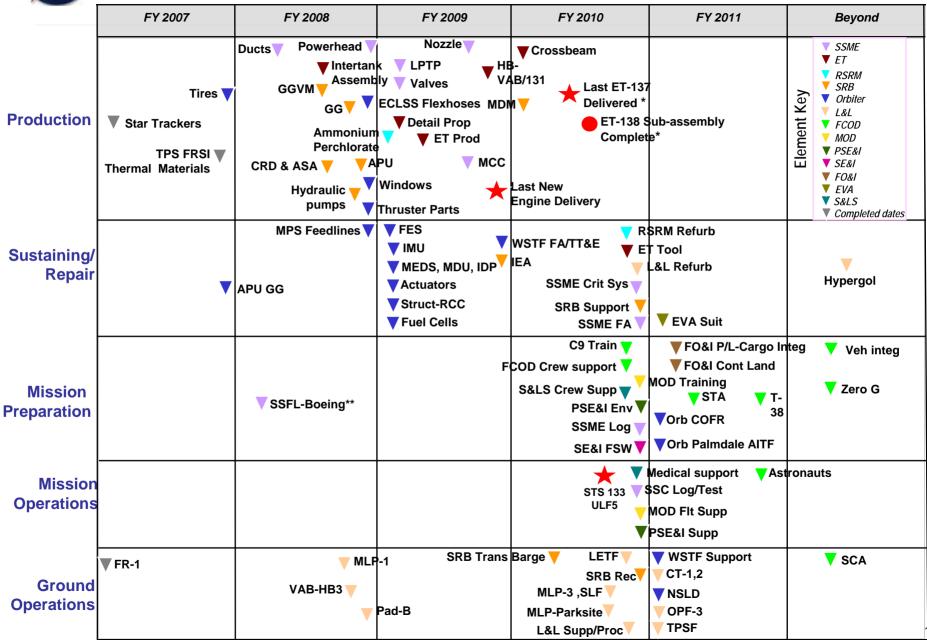
Yellow - Boeing

Dark Blue - USA

Purple - Lockheed-Martin

Green - Hamilton Sunstrand

Blue - PWR

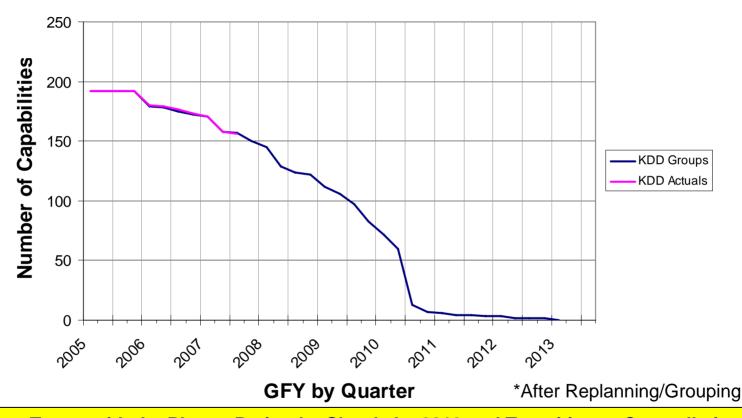

Orange - ATK

Red - Orbiter Project (JSC)

NASA

*Currently under review

Shuttle Transition Strategic Capabilities Last Need Milestones



**NASA Facility LND Completed in FY2006 and currently being released

SSP Strategic Capabilities Assessment (SCA) Key Decision Date (KDD) Burn Down

KDD Planned vs. Actuals

NASA is on Target with the Plan to Retire the Shuttle by 2010 and Transition to Constellation

Capability: a bounded function performed for the SSP; Comprised of workforce; facilities/equipment, suppliers and contracts that together perform a high-level function (e.g. SSME HPOT manufacturing). **SCA Key Decision Date:** date at which a disposition decision is needed in order to promptly begin capability, phase out at its last need date. Timed to minimize unnecessary expense incurred by maintaining capabilities no longer required.

Space Shuttle to Constellation Coordination

Launch Processing Transition Synergy

SRB stacking operations in the VAB in support of Ares 1-X

Ares I project requested that each solid rocket booster be stacked sequentially to quantify and observe the potential deflection caused in the MLP due to forces inflicted by a single booster assembly.

Accomplished for STS-118 and STS-120

Paperless System

Powered up Shuttle OV-103 Discovery using a paperless system planned for use on Orion and Ares. Accomplished for STS-120

SSP-CxP Manufacturing Plan Integration - MAF Utilization

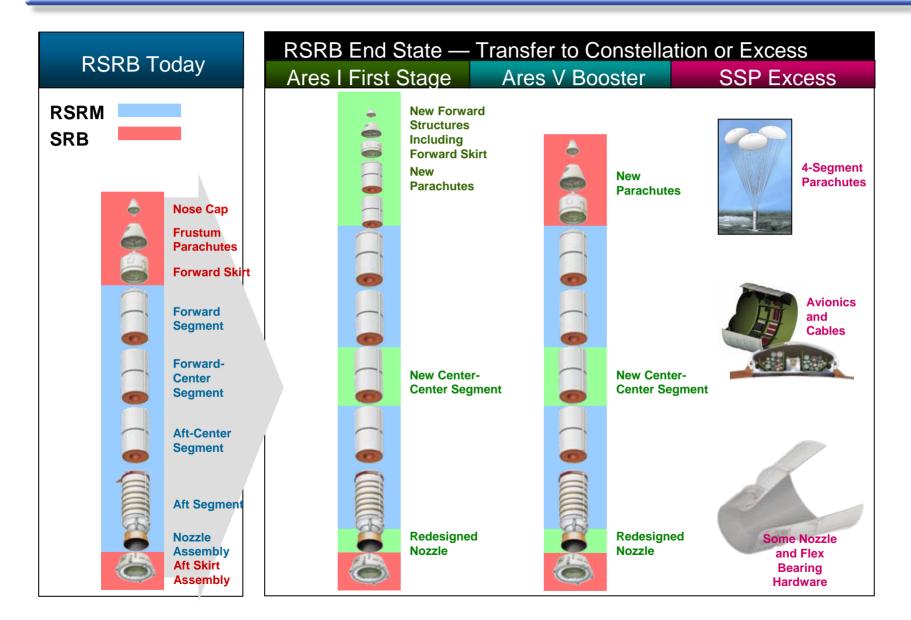
Phased transition of MAF floor space and tooling to CxP (Ares I US and Orion)

Coordination by SSP and CxP (and ET and Ares I US) in work to identify detailed issues, conflicts, resolution

In Work – Near Term Meetings Planned

SSP-CxP Manifest Integration – Launch Processing Integration

As CxP progresses to Ares 1-X, coordination and integration of the Space Shuttle manifest for KSC Facilities Usage (e.g. VAB High Bays) becomes more important.


SSP Manifest assessments/options being integrated with CxP Planning & vice versa

CxP Test Events in Shuttle Master Schedule

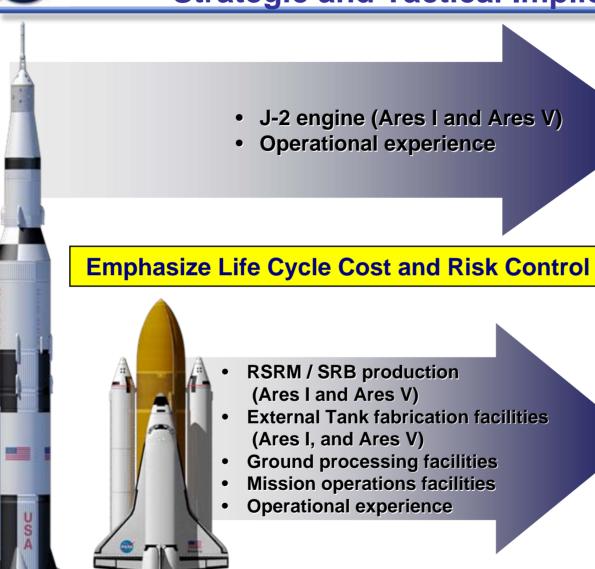
Transition is Occurring Now – Results are Good

Transition Example: SSP RSRB Project

Major Space Shuttle Program Facilities

New Orleans, LA

(FSW, FCE, ORB, RMS)


-United Space Alliance - SFOC

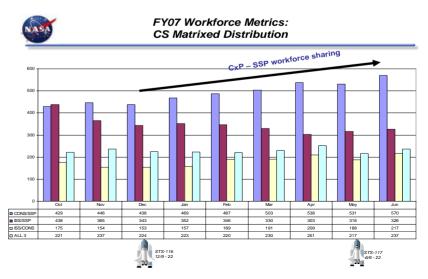
Saturn V

Space Shuttle

Leveraging the Ares I and Ares V Heritage: Strategic and Tactical Implications

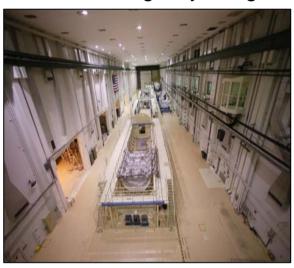
NASA Transition Driving Paradigm Changes

- Focus Change: NASA is moving our HSF workforce from Shuttle and ISS operations work to CxP design and development; Will spend the same amount on skilled labor, but with an emphasis on design of new vehicles to explore beyond low earth orbit. Leaner Across the Board, More Development
- Reduce Fixed & Ops Costs: New vehicles must cost less to operate, or we cannot afford to develop the vehicles to explore beyond earth orbit. Must drop production, processing and operations costs.
- Geographical & Skill Shifts: Regional workforce impacts of shifting from "vehicle processing" and "operations" to DDTE are becoming clearer. Reducing the impacts to specific regions will require assignment of specific Constellation development, test & manufacturing as Shuttle is completed.
- Budget Threat: Still defining post Shuttle Fly-Out asset disposition work -Funds spent on Shuttle T&R come from Exploration DDTE. Asset Disposition
 costs to be minimized.


Transition Is About Re-Invention and Re-Invigoration of NASA

Transition and the Workforce

- Unique Challenges:
 - Retaining Skills for Shuttle Operations to Safely Execute Remaining Shuttle Missions; and
 - Managing Transition of Appropriate Shuttle Workforce into Constellation Development; and
 - Retaining Skills during Gap to Safely Execute Constellation IOC Flight Operations (2010-15)
 - Balancing "10 Healthy Centers" with Program Requirements drive Workforce and Skill Needs
- NASA is Committed to Transitioning as Much of the Shuttle Civil Service Workforce to Other Agency Programs as is Practical, Using Strategies such as:
 - Workforce Sharing, Matrixing, Detailing. Retraining, Skills Assessment and Org Matching
- NASA is Committed to Working with Shuttle Contractor Partners on Workforce Issues.
 - Industry has a Range of Transition, Retention, and Staffing Tools Available to Maintain Critical Skills to Meet their Contractual Obligations Required for Shuttle Mission Execution.
 - Unique to Each Contractor Situation and their Known Role in Future Constellation Work



Facilities Transition Already Occurring

- KSC / Operations & Checkout Building
 - Highbay for all Orion final assembly
 - Highbay cleanout Complete
 - Highbay design in work

KSC / Pad 39B

- Launch Pad and Support Facilities
- Lightning Protection System

- Michoud Assembly Facility (MAF)
 - Primary structure manufacturing
 - Composite and metal fabrication
 - Planned Users: Orion, Ares I Upper Stage, Ares V Earth Departure Stage, Ares V Core Stage, COTS

Constellation Leverages Unique Skills and Capabilities Throughout NASA Centers

Dryden • Lead Abort Flight Test Integration/Operations Abort Test Booster procurement Flight Test Article Development/

Integration

Thermal Protection

System support

JPL

Ames

- Lead Thermal Protectio System ADP
- Aero-Aerothermal database
- Ares Abort simulations
- Software and GN&C support

Glenn

- Lead Service Module and Spacecraft Adapter integration
- Flight Test Article "Pathfinder" fabrication
- Ares I-1 upper stage simulator lead
- Ares power, TVC and sensors lead
- J-2X altitude/inspace testing
- E&L Support
- EVA Power Communications ics, and Informatics Lead

Goddard

 Communications Support

Langley

- Lead Launch Abort System integration
- Lead landing system ADP
- Ares I-1 vehicle integration
- Ares aerodynamics lead
- SE&I Support

Kennedv

- Home for Ground Ops Project
- Ground processing
- Launch operations
- Recovery operations

- Home for Program
- Home for Projects: Orion, Mission Ops, EVA, Lunar Lander
- Lead Crew Module integration
- Orion Spacecraft Integration
- GFE projects management
- Flight Test Program

Stennis

for Ares

Marshall

- Home for Ares Project
- Ares I and V development and integration lead
- LAS and SM SE&I Support

Open Exploration Architecture: Pieces of a Greater Mission

Planning & Support for Human Missions to the Moon & Beyond

US (NASA+Industry)-Developed Initial Capabilities

- Launch Vehicle Architecture
- Lunar Lander: ascent vehicle, descent vehicle, basic habitation
- Initial EVA system & Surface Suit
- Basic Nav & Comm

Open For Global Cooperation

Systems & Capabilities Envisioned for an Outpost including:

- Long duration surface suit
- Advanced, long-duration Habitation
- Basic and Augmented Power Systems
- Basic, unpressurized rover
- Pressurized rover
- Logistics rover
- Augmented, high bandwidth satellite communication/navigation
- Logistics Resupply
- ISRU Production

Time

Participant Flexibility Strategy

- Welcome parallel capabilities while seeking "open architecture" contributions
- Continue success of Global Exploration Strategy via multilateral engagement
- Continue success of US Chamber of Commerce engagement
- Build on long-standing bilateral relationships while seeking new relationships when opportunities and conditions permit

Transition Communications

Top-Down, Bottoms-Up, In and Out Transition Communication

Transparency, Accuracy, Clarity, Brevity: the Facts in a Timely Manner

Clear & Consistent Communication

T&R Monthly Activity Report

- Distributed broadly
- Provides a monthly snapshot of what everyone is working on
- Requires short-term goal setting
- Quick way to track progress

T&R Issue Report

- Complied for managers review at TQPMR
- Helps identify temporary vs. serious roadblocks
- Stimulates discussion about shared (or not) experiences across centers

Transition Websites: www.nasa.gov/transition

- •http://sspweb.jsc.nasa.gov/webdata/spo/transition/index.htm
- •ICE Portal: Transition

Strategic Comm Possibilities: NASA TV, Transition Summit, Transition Town Hall Meetings, Transition Talking Points, Transition WAR

NASA Transition Summary

- Transition is Challenging, Complex, and Dynamic
- Plans & Estimates Continue to Mature
 - NASA Transition Plan (2008)
 - Workforce Transfer & Allocation (Strategy Release in March 2008)
 - Facility Transfer/Disposal on Target (For Retirement, Closeout & Transfer)
 - Personal Property Disposition (Transfer and Excess)
- FY11+ Workforce, Shuttle Property Excess, Facility Gap budgets remain Threat
 - FY 2010 President's Budget is target for incorporation of revised T&R Budget
 - Post-Shuttle Workforce skill needs will shift -- We are preparing
 - Major facilities are transitioning today Substantial progress already
 - Longer "Gap" = Greater difficulty in mitigating workforce & facility impacts
- NASA will Generally Spend Same Amount on Labor Nation-wide, but Change of Emphasis Toward Development of New Exploration Systems

NASA is not going out of Business, rather, Transition Enables a New Line of NASA Business for the Next 30-50 Years.

Stable CxP Funding, Minimizing Gap & Enabling Lunar Work: Keys to Success!